Ковёр Серпинского — большая энциклопедия. Что такое Ковёр Серпинского

Ковёр Серпинского


Материал из свободной энциклопедии
Ковёр (квадрат) Серпинского

Ковёр Серпинского (квадрат Серпинского) — фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Вацлавом Серпинским.

Построение

Итеративный метод

6 итераций построения ковра Серпинского.

Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется внутренность центрального квадрата. Получается множество, состоящее из 8 оставшихся квадратов «первого ранга». Поступая точно так же с каждым из квадратов первого ранга, получим множество , состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность

пересечение членов которой есть ковер Серпинского.

Метод хаоса

1. Задаются координаты 8 точек-аттракторов. Ими являются вершины и середины сторон исходного квадрата .
2. Вероятностное пространство разбивается на 8 равных частей, каждая из которых соответствует одному аттрактору.
3. Задаётся некоторая начальная точка , лежащая внутри квадрата .
4. Начало цикла построения точек, принадлежащих множеству ковра Серпинского.
1. Генерируется случайное число .
2. Активным аттрактором становится та вершина, на вероятностное подпространство которой выпало сгенерированное число.
3. Строится точка с новыми координатами: ,
где:  — координаты предыдущей точки ;  — координаты активной точки-аттрактора.
5. Возврат к началу цикла.

Свойства

Ссылки


О сайте infor24.ru Наш сайт является неофициальным ресурсом, который несет людям знания. Он открыт и бесплатен для любого пользователя. Сайт infor24.ru - большая статейная библиотека со статьями на различные тематики для всех и каждого.

Основа этой страницы находится в Вики. Текст доступен по официальной лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. infor24.ru является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation). Сайт infor24.ru является неофициальным сайтом.

E-mail: admin@infor24.ru