Куби́ческая фу́нкция в математике — это числовая функция вида
где Другими словами кубическая функция задаётся многочленом третьей степени.
Производная кубической функции имеет вид . В случае, когда дискриминант полученного квадратного уравнения больше нуля, оно имеет два различных решения, которые соответствуют критическим точкам функции . При этом, одна из этих точек является точкой локального минимума, а другая точкой локального максимума. Равенство нулю второй производной определяет точку перегиба .
График кубической функции называется куби́ческой пара́болой. В литературе часто встречаются альтернативные определения кубической параболы как графика функции или . Легко видеть, что применяя параллельный перенос можно привести кубическую параболу к виду, когда она будет задаваться уравнением . Путём применения аффинных преобразований плоскости можно добиться, чтобы и . В этом смысле все определения будут эквивалентны.
Кроме того, кубическая парабола
![]() |
![]() |
![]() |
Коэффициент при кубе | Коэффициент при квадрате | Коэффициент при первой степени |
Касающиеся прямые в трёх коллинеарных точках графика кубической функции пересекают график снова в коллинеарных точках.[1]
Кубическую параболу иногда применяют для расчёта переходной кривой на транспорте, так как её вычисление намного проще, чем построение клотоиды.