Московский математический папирус — большая энциклопедия. Что такое Московский математический папирус

Московский математический папирус


Материал из свободной энциклопедии
Четырнадцатая задача Московского математического папируса (Struve 1930). Наверху иератический текст, внизу иероглифическая транскрипция. Текст читается справа налево

Московский математический папирусматематический папирус Голенищева») — один из древнейших известных современности математических текстов. Он был составлен около 1850 года до н. э., следовательно, превосходит по древности другой знаменитый древнеегипетский текст, посвящённый разрешению математических задач, — Папирус Ринда (или Папирус Ахмеса), написанный ок. 1650 года до н. э., то есть Московский примерно на 200 лет его старше.

Первым владельцем этого папируса был один из основателей русской египтологии Владимир Семёнович Голенищев. Ныне «папирус Голенищева» находится в Музее изобразительных искусств им. А. С. Пушкина в Москве. Основываясь на способе написания курсивного иератического текста, специалисты предполагают, что он принадлежит ко времени правления XI династии (Аменемхетов-Сенусертов) периода Среднего царства Древнего Египта. Возможно, Московский математический папирус был написан при фараоне Сенусерте III или Аменемхете III.

Описание Московского математического папируса

Длина Московского математического папируса составляет 5,40 м, а его ширина от 4 до 7 см. Весь текст папируса в 1930 году в книге, вышедшей в Берлине на немецком языке, был разбит основателем марксистской школы исследователей Древнего Востока в СССР Василием Васильевичем Струве на 25 задач, к каждой из которых составитель привёл решение[1]. Большинство задач Московского математического папируса посвящены практическим проблемам, связанным с применением геометрии.

Задача № M10 Московского математического папируса

Задача № 10 Московского математического папируса, связанная с вычислением поверхности корзины с отверстием 4,5, может сводиться к нахождению площади либо поверхности полушария, либо боковой поверхности полуцилиндра, либо площади полукруга[2]. Возможно, это первый известный в истории случай определения площади кривой поверхности, требующий использования числа π, которое египтяне определяли как , тогда как на всём Древнем Ближнем Востоке оно считалось равным трём. Таким образом, Московский математический папирус свидетельствует о том, что египтяне могли с большей точностью вычислять площади треугольника, трапеции, прямоугольника, круга, а также объёмы пирамиды, призмы, параллелепипеда, цилиндра и усечённой пирамиды.

Задача № M14 Московского математического папируса

Наибольшее внимание египтологов и математиков привлекает четырнадцатая задача Московского математического папируса. Само её существование указывает на то, что древние египтяне умели находить объёмы не только тетраэдра, но и усечённой пирамиды.

«Вычисление усеченной пирамиды. Вам скажут: пирамида имеет высоту 6, её основание — 4, а вершина — 2. Для решения вычислите квадрат 4-х. Получите 16. Удвойте 4. Получите 8. Найдите квадрат от 2-х. Получите 4. Теперь сложите 16, 8 и 4. Это будет 28. Умножьте 1/3 на 6. Это будет 2. Умножьте 2 на 28. Это будет 56. 56 — вот это и есть ответ. Вы решили все правильно.»

Современное описание условия данной задачи: дана пирамида, верхняя часть которой отделена от нижней так, что нижняя часть пирамиды является четырёхугольной усеченной пирамидой с основаниями, равными соответственно 4 и 2 единицы, при высоте 6 единиц. Необходимо найти объём этого тела.

Pyramide-tronquée-papyrus-Moscou 14.jpg

Нам известно, что объём усеченной пирамиды определяется по формуле:

Путём соответствующих вычислений автор папируса определил, что объём пирамиды составляет:

Остаётся неизвестным путь нахождения этой формулы.

Между тем, в Вавилоне для решения этой же задачи применили бы неточную формулу: [3]

См. также

Примечания

Литература

  • Struve W. W., Turajeff B. A. Mathematischer Papyrus des Staatlichen Museums der Schönen Künste in Moskau. — Berlin: Julius Springer, 1930. — (Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung A. Quellen 1).
  • Виленкин Н. Я. О вычислении объёма усечённой пирамиды в Древнем Египте. Историко-математические исследования, вып. 28, 1985.
  • Gunn B., Peet T.E. Four geometrical problems from the Moscow mathematical papyrus. The Journal of Egyptian Archaeology, 15, 1929, p. 167—185.

О сайте infor24.ru Наш сайт является неофициальным ресурсом, который несет людям знания. Он открыт и бесплатен для любого пользователя. Сайт infor24.ru - большая статейная библиотека со статьями на различные тематики для всех и каждого.

Основа этой страницы находится в Вики. Текст доступен по официальной лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. infor24.ru является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation). Сайт infor24.ru является неофициальным сайтом.

E-mail: admin@infor24.ru