Эвольвента окружности — большая энциклопедия. Что такое Эвольвента окружности

Эвольвента окружности


Материал из свободной энциклопедии

Эвольвентой окружности является траектория любой точки прямой линии, перекатываемой по окружности без скольжения. По эвольвенте обрабатывают профиль зубьев зубчатых колёс. Эвольвенту окружности можно получить, сматывая натянутую нить с цилиндрической поверхности. Конец этой нити будет описывать эвольвенту.

Параметрические уравнения эвольвенты окружности [1]:


где — радиус окружности; — угол поворота радиуса окружности (полярный угол точки касания прямой и окружности).

Натуральное уравнение эвольвенты окружности, т.е. зависимость кривизны от длины дуги, имеет вид:

Построение эвольвенты окружности по заданному диаметру

Имеется окружность диаметра с центром в точке . Данную окружность делим на двенадцать равных частей. В точках 2, 3, 4, … проводим касательные к окружности, направленные в одну сторону. Точки эвольвенты находим исходя из того, что при развёртывании окружности точка должна отстоять от точки 2 на расстоянии, равном длине дуги между точками 1 и 2, а точка должна отстоять от точки 3 на расстоянии, равном длине дуги между точками 1 и 3 (две длины предыдущей дуги), и т. д.

Точное положение точек эвольвенты получим, откладывая по касательным длины соответствующих дуг. Длину дуги между точками 1 и 2 определяем по формуле где  — диаметр окружности,  — число частей, на которое разделена окружность.

Получив ряд точек эвольвенты, соединяем их плавной линией.

В данном случае окружность диаметра является эволютой к этой эвольвенте.

Эвольвента окружности

Вариации и обобщение

Для эллипса тоже существует эвольвента, которая является алгебраической кривой[2].

См. также

Ссылки и примечания

  1. Савелов А.А. Плоские кривые. Систематика, свойства, применения (справочное руководство). — Москва: ФИЗМАТГИЗ, 1960. — С. 252-254.
  2. СПЕЦИАЛЬНЫЕ ПЛОСКИЕ КРИВЫЕ. https://www.math10.com/ru/vysshaya-matematika/analiticheskaya-geometriya/spetsialnie-plokostnie-krivie.html

Литература

1. Богданов В. Н., Малежик И. Ф., Верхола А. П. и др. Справочное руководство по черчению. — М.: Машиностроение, 1989. — С. 438-480. — 864 с. — ISBN 5-217-00403-7.


О сайте infor24.ru Наш сайт является неофициальным ресурсом, который несет людям знания. Он открыт и бесплатен для любого пользователя. Сайт infor24.ru - большая статейная библиотека со статьями на различные тематики для всех и каждого.

Основа этой страницы находится в Вики. Текст доступен по официальной лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. infor24.ru является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation). Сайт infor24.ru является неофициальным сайтом.

E-mail: admin@infor24.ru